MATH 221, Spring 2010.(50 minute exam)

## Name

ID

1. Write the last 2 digits of your student ID in the blank space in the vector $w$.

$$
\text { Let } \bar{v}=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right], \bar{u}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \text { and } w=\left[\begin{array}{c}
4 \\
\ldots \\
2
\end{array}\right]
$$

(a) Does $w$ belong to $\operatorname{span}\{u, v\}$ ? Justify.
(b) Does $u$ belong to $\operatorname{span}\{v, w\}$ ? Justify.
2. Write the last 2 digits of your ID in the blank space in the vector $v_{1}$.

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
\cdots
\end{array}\right], v_{2}=\left[\begin{array}{c}
0 \\
0 \\
h+2
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
h \\
6
\end{array}\right]
$$

Find all values of $h$ for which the vectors are linearly independent.
3. Let $S=\left\{\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]: a, b, c\right.$ are real numbers and $\left.a=(\lambda+1) b c\right\}$ where $\lambda$ is the last 2 digits of your ID. Is $S$ a subspace of $R^{2 \times 2}$ ?
4. Let $S=\{(a,(\lambda+1) a, b): a, b$ are real numbers $\}$ where $\lambda$ is the last 2 digits of your ID.
(a) i. Is $S$ a subspace of $R^{3}$ ?
ii. If $S$ is a subspace find a basis for $S$.
(b) Let $M_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], M_{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $M_{3}=\left[\begin{array}{cc}1 & 0 \\ (\lambda+1) & 0\end{array}\right]$ where $\lambda$ is the last two digits of your student ID. If $S=\operatorname{span}\left\{M_{1}, M_{2}, M_{3}\right\}$ find a basis for $S$.
5. Write the last 2 digits of your student ID in the blank space in the vector $u$ where $\bar{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\bar{u}=\left[\begin{array}{c}2 \\ \ldots\end{array}\right]$. Is $\{\bar{v}, \bar{u}\}$ a basis for $R^{2} ?$

