Name ______ID _____

1. Write the last 2 digits of your student ID in the blank space in the vector w.

Let
$$\overline{v} = \begin{bmatrix} 2\\0\\-1 \end{bmatrix}$$
, $\overline{u} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$ and $w = \begin{bmatrix} 4\\....\\2 \end{bmatrix}$.

- (a) Does w belong to $span\{u, v\}$? Justify.
- (b) Does u belong to $span\{v,w\}?$ Justify.

2. Write the last 2 digits of your ID in the blank space in the vector v_1 .

	[1]		0		0	
$v_1 =$	-1	$, v_2 =$	0	$, v_3 =$	h	.
			h+2		6	

Find all values of h for which the vectors are *linearly independent*.

3. Let $S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \text{ are real numbers and } a = (\lambda + 1)bc \right\}$ where λ is the last 2 digits of your ID. Is S a subspace of $R^{2 \times 2}$?

- 4. Let $S = \{(a, (\lambda + 1)a, b) : a, b \text{ are real numbers}\}$ where λ is the last 2 digits of your ID.
 - (a) i. Is S a subspace of R^3 ?
 - ii. If S is a subspace find a basis for S.

(b) Let $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $M_3 = \begin{bmatrix} 1 & 0 \\ (\lambda + 1) & 0 \end{bmatrix}$ where λ is the last two digits of your student ID. If $S = span\{M_1, M_2, M_3\}$ find a basis for S.

5. Write the last 2 digits of your student ID in the blank space in the vector u where $\overline{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\overline{u} = \begin{bmatrix} 2 \\ \dots \end{bmatrix}$. Is $\{\overline{v}, \overline{u}\}$ a basis for R^2 ?